
1 

Ph.D. Qualification Exam 2019 

Compiler Construction 

1. Given the ac code segment, please write the corresponding Java assembly code using Jasmin 
Instructions, which are listed in Table 1 for your reference. In addition, the tokens defined in ac 
are listed in Table 2 to help you understand the ac code. (20pt) 

ac code: f a f b i c a=1.8 c=9 b=9.9*a+c*3.2+1 a=b p a

Table 1. List of Java assembly instructions.        Table 2. The tokens defined in ac language.  

Instruction Functionality 

iadd、fadd add operation 

isub、fsub subtract operation 

imul、fmul multiple operation 

idiv、fdiv divide operation 

ldc load constant into stack; e.g., ldc 3 

istore、fstore store local variable 

iload、fload load local variable 

getstatic、
putstatic 

Field manipulation instructions 

invokevirtual、
invokestatic、
invokespecial 

invoke methods 

swap exchange stack contents 

 

Note:  

1) We assume that local variable 0, 1, and 2 in the assembly code refer to the ac variable a, 

b, and c, respectively. Your answer (assembly code) should follow the assumption; 

otherwise, it will be considered as wrong answer. 

2) A valid Java assembly program should include the code for the execution environment 

setup as above. You are excepted to answer WITHOUT listing the environment setup 

code. 

  

Terminal Regular Expression 

floatdcl "f" 

intdcl "i" 

print "p" 

assign "=" 

plus "+" 

minus "-" 

multiply "*" 

div "/" 

inum [0 − 9]+ 

fnum [0 − 9]+.[0 − 9]+ 

blank (" ")+ 

id [a − e] | [g − h] | [j − o] | [q − z] 

.class public main  

.super java/lang/Object  

.method public static main([Ljava/lang/String;)V  

.limit stack 10 /* Define your storage size. */  

.limit locals 3 /* Define your local space number. */  
 

/* … (Answer) Java assembly code for the ac program … */  
 
.end method 

 



Final  NCKU-CSIE 

 

2. Given the context-free grammar G, an LL(1) grammar where X is start symbol, please write 

down the FIRST and FOLLOW sets for the non-terminals. In addition, please construct the 

parse table. Examples of your answers are listed as below. (20pt) 

Context-free grammar, G. 

 

 Example of your FIRST and FOLLOW sets. 

 

Example of your parse table. 

 

3. We know that a grammar, which is LL(1), may not be an LR(0) grammar sometimes.  

To determine if a grammar could be handled by the LR(0) parsing method, the common 

approach is to:  

1) build the transition diagram (i.e., characteristic finite-state machine, CFSM), and 

2) examine if there is any conflicts within each state of the diagram.  

We say that a grammar is not LR(0), if there is a shift/reduce or reduce/reduce conflict within a 

table entry. Otherwise, the grammar is LR(0). 

Here, we consider the LL(1) grammar, G, from above again. You are ask to determine if G is 

LR(0) or not (i.e., a Yes or No answer) by building the transition diagram. If G is not LR(0), 

please indicate the exact conflict of the conflicting state. (20pt) 

 

Example of a transition diagram node. 

 

Note: reducible states are double-boxed nodes. 

 

 

 

State 0
S → ‧A B $

A → ‧a C

Goto
2

3

symbol

Non-terminals FIRST() FOLLOW() 

X   

Y   

Z   

Non-terminals 
/Terminals 

a b z 

X    

Y    

Z    

1| X -> Yz 
2|    | a 
3| Y -> bZ 
4|    | λ 

5| Z -> λ 



Final  NCKU-CSIE 

 

4. Given the code segment, K, please draw their Control Flow Graphs (CFG). Note that code 

segment K is high-level (C-like) code. (20pt) 

Code segment, K

 

 

  

while (...) { 
 k = 2; 
 if (...) { 
  a = k + 2; 
  x = 5; 
 } else { 
  a = k * 2; 
  x = 8; 
 } 
 k = a; 
 while (...) { 
  b = 2; 
  x = a + k; 
  y = a * b; 
  k++; 
 } 
 print(a + x); 
} 
print(a + k); 
 



Final  NCKU-CSIE 

 

5. We have learnt several compiler optimization techniques, which transform the code into a more 

efficient form. Now, we consider the five optimization schemes: constant propagation, constant 

folding, copy propagation, loop unrolling, and unreachable code elimination. Please apply them 

to the four code segments, V, W, X, and Y. (20pt) 

Note: 

1) One optimization technique should be applied to exactly a code segment; for example, if 

constant propagation were applied to code segment W, it will not be applied to another 

code segment. 

2) Be advised that you should follow the example below to give your answer. 

 

Code segment, V 

 
Code segment, W 

 
Code segment, X 

 
Code segment, Y 

 
 

Example of your answer for code transformation. 

Code segment, A applies common subexpression elimination. 

a = b + c;   

c = b + c; 

d = b + c; 

 

n = 10 
c = 2 
for (i = 0; i < n; i++) { 
 s = s+i*c; 
} 

X = 1.9 * 2.5; 
Y = 2.25 * 2.25; 
Z = 8.7 * 8.7; 
 

x = y; 
if (x > 1) { 
 s = x * f(x - 1); 
} 
 

if (a < c && false) { 
 printf("I like compiler so much.\n"); 
 printf("I want to attend this exam again next year\n"); 
 printf("\n"); 
} else { 
 printf("I would like to pass this exam this time.\n") 
} 
 

a = b + c; 
c = a; 
d = b + c; 


